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1 Subharmonicity and Convexity

1.1 Jensen’s inequality and composition of convex functions with sub-
harmonic functions

Last time, we showed that u ∈ C2(Ω) is subharmonic iff ∆u ≥ 0 in Ω.

Remark 1.1. Let u ∈ SH(Ω) be such that u 6≡ on any component (so u ∈ L!
loc). Approx-

imating u by a decreasing sequence of smooth, subharmonic functions, one may show that∫
u∆ϕdx ≥ 0 for all 0 ≤ ϕ ∈ C2(Ω) such that ϕ = 0 outside a compact subset of Ω.

Theorem 1.1. Let Ω be open, u ∈ SH(Ω), and let ϕ : R → R be increasing and convex.
Then ϕ ◦ u ∈ SH(Ω) (we define ϕ(−∞) = limt→−∞ ϕ(t)).

Example 1.1. If f ∈ Hol(Ω), then |f |a ∈ SL(Ω) for any a > 0. Write u = log |f | and
ϕ(t) = eat, where a > 0.

To proof this theorem, we need the following general inequality for convex functions.

Proposition 1.1 (Jensen’s inequality). Let I ⊆ R be an open interval, and let ψ : T → R
be convex. Let (Ω, µ) be a measure space equipped with a probability measure (µ(Ω) = 1).
Let f ∈ L1(Ω, I). Then

ψ

(∫
f dµ

)
≤
∫
ψ0f dµ.

Proof. Let I = (a, b), and let c =
∫
f dµ ∈ (a, b). If for a < t1 < c < t2 < b, c = αt1 =

(1 − α)t2, where α = (t2 − c)/(t2 − t1), then ψ(c) ≤ αψ(t1) + (1 − α)ψ(t2). After some
algebra, we get

ψ(c)− ψ(t1)

c− t1
≤ ψ(t2)− ψ(c)

t2 − c
.

So

sup
t1<c

ψ(c)− ψ(t1)

c− t1︸ ︷︷ ︸
=ψ′

left(c)

≤ inf
t2>c

ψ(t2)− ψ(c)

t2 − c︸ ︷︷ ︸
=ψ′

right(c)

,
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where these are the left and right derivatives of ϕ at c. Then ψ(t) ≥ ψ(c) +ψright(c)(t− c)
for all t ∈ I. That is the tangent line at c lies below the graph of ψ. It follows that

∫
ψ(f) dµ ≥ ψ

(∫
f dµ

)
+ ψ′right(c)

�
��

�
��*

0(∫
f − c

)
.

Now let’s prove the theorem.

Proof. Let {|x− a| ≤ R} ⊆ Ω. Then

u(a) ≤ 1

2ıR

∫
|y|=R

u(a+ y)) ds(y).

Applying Jensen’s inequality,

ϕ(u(a)) ≤ 1

2πi

∫
|y|=R

ϕ(u(a+ y)) ds(y).

We also check that ϕ ◦ u is upper semicontinuous (since ϕ is continuous). We get that
ϕ ◦ u ∈ SH(Ω).

1.2 Maximality bounds in an annulus

Theorem 1.2. Let u be subharmonic in 0 ≤ R1 < |x| < R2 ≤ ∞, and let M(r) =
max|x|=r u(r). Then M(r) is a convex function of log(r) ∈ (log(R1), log(R2)): if r1, r2 ∈
(R1, R2) and 0 ≤ λ ≤ 1, then

M(rλ1 r
1−λ
2 ) ≤ λM(r1) + (1− λ)M(r2).

If u is subharmonic in |x| < R, then M(r) is an increasing function of r.

Proof. We claim that if I is an open interval in R, f : I → R is convex if any only if for
any compact interval J ⊆ I and any linear function L,

sup
J

(f − L) = sup
∂J

(f − L).

This follows from the fact that the graph of f on J lies beneath the chord connecting the
endpoints.

Using this characterization of convexity, we have to show that if a, b ∈ R are such that
M̃(r) = M(r) = a log(r) − b is such that M(rj) ≤ 0 for j = 1, 2, then M̃(r) ≤ 0 when
r1 ≤ r ≤ r2. If we set v(x) = u(x) − a log |x| − b, then v(x) ∈ SH(R1 < |x| < R2) since
a log |x| − b is harmonic. Then M̃(r) = max|x|=r v(x). If v(x) ≤ 0 when |x| = r1 and

|x| = r2, then v(x) ≤ 0 for r1 ≤ |x| ≤ r2 by the maximum principle. Therefore, M̃(r) ≤ 0
for r1 ≤ r ≤ r2. This shows that M(r) is convex as a function of log(r).

If u ∈ SH(|x| < R), then M(r) increases by the maximum principle applied to u.
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Corollary 1.1 (Hadamard’s three circle theorem). Let f ∈ Hol(R1 < |z| < r2), and let
M(r) = max|z|=r |f(z)|. Then log(M(r)) is a convex function of log(r): if r1, r2 ∈ (R1, R2)
and 0 ≤ λ ≤ 1, then

M(rλ1 r
1−λ
2 ) ≤M(r1)

λM(r2)
1−λ.

Proof. Apply the theorem to u = log |f |.

Remark 1.2. This inequality is much sharper than what we get from the usual maximum
principle applied to |f |: M(rλ1 r

1−λ
2 ) ≤ max(M(r1),M(r2)).

Next time, we will prove the following result (and more).

Proposition 1.2. If u ∈ SH(|x| < R), then the average

I(r) :=
1

2πr

∫
|y|=r

u(y) ds(y).

is a convex function of log(r) which is increasing.
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