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1 Subharmonicity and Convexity

1.1 Jensen’s inequality and composition of convex functions with sub-
harmonic functions

Last time, we showed that u € C?(Q) is subharmonic iff Au > 0 in €.

Remark 1.1. Let u € SH(2) be such that u # on any component (so u € Lioc). Approx-
imating u by a decreasing sequence of smooth, subharmonic functions, one may show that
JuApdr >0 for all 0 < p € C?(£2) such that ¢ = 0 outside a compact subset of Q.

Theorem 1.1. Let Q be open, u € SH(R), and let ¢ : R — R be increasing and convex.
Then pou € SH(Q) (we define p(—o00) = limy—_ o (%) ).

Example 1.1. If f € Hol(Q2), then |f|* € SL(Q) for any a > 0. Write u = log |f| and
o(t) = e, where a > 0.

To proof this theorem, we need the following general inequality for convex functions.

Proposition 1.1 (Jensen’s inequality). Let I C R be an open interval, and let ¢ : T — R
be convex. Let (2, 1) be a measure space equipped with a probability measure (u(2) =1).

Let f € LY(Q,I). Then
w(/w) < [wosdn

Proof. Let I = (a,b), and let ¢ = [ fdp € (a,b). Iffora <t; <c <ty <b,c=at; =
(1 — a)te, where a = (ta — ¢)/(t2 — t1), then ¥(c) < aw(ty) + (1 — a)(t2). After some
algebra, we get

P(e) —P(tr) < P(t2) — 1P(c)
c—1 - to —cC '
So
sup P(e) —P(tr) < inf Y(t) — 7/)(0)7
ti<c c—1 ta>c to — ¢
Ui (©) =Vl (9



where these are the left and right derivatives of ¢ at c. Then ¥(t) > ¥(c) + ¢right (c)(t — ¢)
for all t € I. That is the tangent line at c¢ lies below the graph of . It follows that

0

[tz v ( / fdu> Yl (©) M -

Now let’s prove the theorem.

Proof. Let {|Jx —a| < R} C Q. Then

1

u(a) < 5— u(a+y))ds(y).
21R |y|:R

Applying Jensen’s inequality,

1

plula)) < 5 p(u(a+y))ds(y).
T Jly|=R

We also check that ¢ o w is upper semicontinuous (since ¢ is continuous). We get that
pou € SH(Q). O

1.2 Maximality bounds in an annulus

Theorem 1.2. Let u be subharmonic in 0 < Ry < |z| < Ry < oo, and let M(r) =
max|y—, u(r). Then M(r) is a conver function of log(r) € (log(R1),log(Ra)): if r1,72 €
(R1,R2) and 0 < XA < 1, then

M (rray™) < AM(r1) + (1 — A) M (r2).
If w is subharmonic in |x| < R, then M(r) is an increasing function of r.

Proof. We claim that if I is an open interval in R, f : I — R is convex if any only if for
any compact interval J C I and any linear function L,

sup(f — L) = sup(f — L).
J oJ

This follows from the fact that the graph of f on J lies beneath the chord connecting the
endpoints.

Using this characterization of convexity, we have to show that if a,b € R are such that
M(r) = M(r) = alog(r) — b is such that M(r;) < 0 for j = 1,2, then M(r) < 0 when
r1 < r < ro. If we set v(z) = u(z) — alog|z| — b, then v(x) € SH(R; < |z| < R3) since
alog|z| — b is harmonic. Then M (r) = max|,—, v(z). If v(z) < 0 when || = r; and
|z| = 7y, then v(z) < 0 for 7, < |x| < ro by the maximum principle. Therefore, M (r) < 0
for ry <r < ry. This shows that M (r) is convex as a function of log(r).

If u e SH(|x| < R), then M (r) increases by the maximum principle applied to w. O



Corollary 1.1 (Hadamard’s three circle theorem). Let f € Hol(Ry < |z| < r2), and let
M (r) = max|,—, |f(2)|. Thenlog(M(r)) is a conver function of log(r): ifr1,m2 € (R1, Ra2)
and 0 < XA <1, then

M(riry ™) < M(r)*M(rp)' .

Proof. Apply the theorem to u = log|f|. O

Remark 1.2. This inequality is much sharper than what we get from the usual maximum
principle applied to |f|: M (riri™*) < max(M (1), M (r3)).

Next time, we will prove the following result (and more).
Proposition 1.2. If u € SH(|z| < R), then the average

1) = [ u(y)ds(y).

27 Jyy|=r

is a convex function of log(r) which is increasing.



	Subharmonicity and Convexity
	Jensen's inequality and composition of convex functions with subharmonic functions
	Maximality bounds in an annulus


